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Abstract-Non-stationary phenomena arising in structures can be effectively controlled via smart
(intelligent) materials. The corresponding mathematical problems contain controls in the coefficients
of hyperbolic equations. these controls depending hoth on position and time. When appropriately
activated. such controls may provide 100% screening of some extended parts of the structure from
the invasion of dynamic disturbances. For bars exposed to longitudinal vibrations. the material
pattern producing such a screening effect can be the combination of rank-one laminar composites
in space-time. Such a composite is described as an array of alternating segments with different pairs
(P" k,) and (p,. k,) of density and stiffness of smart materiaL this whole array traveling along the
bar with a suitable constant speed V. (" 1997 Elsevier Science Ltd. All rights reserved.

1. If"TRODUCTION

The appearance of smart materials has made it realistic to claim for the structures properties
that may vary both in space and time, thus making these structures highly responsive to
the non-stationary environment. We shall place emphasis on the design of material patterns
able to block the propagation of undesirable disturbances caused by impulsive loads,
impacts, etc., into some extended parts of the structure vulnerable to a material damage.
Such screening may be achieved through the deployment of special assemblages of smart
materials, e.g.. smart laminar composites, activated at appropriate location at appropriate
time.

Mathematically, the problem reduces to that of the control of coefficients in hyperbolic
equations both in space and time. This control is assumed to be materialized through the
sensors and actuators distributed throughout a smart structure.

2. BASIC CONCEPTUAL FEATURES OF SMART 'v1ATERIAL DESIGN

The above design concept can be efficiently implemented through the use of smart
materials. A smart material is assumed to have the capacity to change its properties both in
space and time to suit the demands placed upon it by the environment.

The smart material is constructed using a distributed set of sensors and actuators
embedded within the body of a structure. The optimal design of structures based on use of
smart materials will be called actire optima! design. Some recent advances in a smart
material design are summarized in Anderson and Tsou (1992).

Examples of smart materials are:

(i) shape memory alloys;
(ii) composites featuring electrorheological fluids that possess the ability to alter their

viscous properties under the presence of an electric field:
(iii) components made by embedding piezoceramic actuators and sensors into a

matrix.

With ordinary (non-smart) materials, the design is necessarily passire and restrained.
Indeed, if the goal is to create a material able to feature a desired response to a variety of
external conditions which may be competitive or even contradictory, then structural
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resources will split to meet the set of requirements rather than to become entirely focused
on the immediate environmental demand.

The concept of smart (active) material design is entirely different. Here, the system
responds at each time to the immediate demand required by the environment. The effec­
tiveness and flexibility of this design strategy is incomparatively greater than those of the
passive approach. Conceptually speaking, the smart materials allow the designer to restrict
himself with single purpose design instead of multi-purpose design. The structure will
resemble a living tissue insofar as it is able to mobilize its properties to meet the immediate
environmental demands. Another benefit associated with smartness is the ability to manipu­
late several physical properties independently.

The concept of active design is implemented through the assumed dependence of
controls both on space and time. In the context of structure mechanics, this concept has so
far been addressed with respect to external loads viewed as controls.

Probably the earliest work on this subject has been initiated by Butkovsky et al. (see
Butkovsky et al. (1980), summarized in Butkovsky (1982). These authors introduced what
they called "movable controls" to effectively suppress vibrations. Eventually, a similar
concept has been exercised in McLaughlin and Slemrod (1986). A moving ("scanning")
control is the one concentrated within a certain spatial domain, this domain moving through
the space as a solid body. This idea works very well when applied to external sources (loads),
it must work even better when implemented toward material or structural parameters.

The elastic moduli (stiffnesses) of structures are known to be very effective controllers.
By now, there is plenty of information concerning optimal layout of materials differing in
their elastic stiffnesses. This information is related either to statics, or to problems of free
vibrations or loss of static stability, in all cases are materials assumed to be passive, i.e.,
their stiffnesses never being time dependent.

The concept of general space and time dependent stiffnesses is intrinsic in the idea of
smart materials, and it promises substantially new possibilities of controlling the systems'
behavior. Specifically, with such stiffnesses combined with space and time dependent
material density, it becomes possible to selectively screen large domains in space-time from
unwanted disturbances which could be initiated either by external influences (i.e., impacts),
or by permanently applied loads. The following examples will illustrate this idea
mathematically.

3. CONTROL OF THE FIRST ORDER EVOLUTION EQUATION

Consider a controlled system governed by the first order equation (Lurie (1971))

Z,+UZ,.=O, O:S;t<:x, -:x<x<:x.

with u = u(x, t) treated as control.
Complemented by the initial condition

.::(0, x) = zo(x), -Cf-.: < x <:x.

this equation describes signals propagating with the phase velocity u = u(x, t).

Suppose that u = u(x, t) takes the values U lo U2(UI < U2) as shown in Fig. I :

u = {rUI in para~lelogram abed,
U2 otherWIse.

(1)

(2)

(3)

In other words, assume that the line segment ab, describing the zone within which the phase
velocity takes the value u), is itself traveling as a solid body with uniform velocity U (see
Fig. I). If this velocity (represented as a slope of the parallelogram abed) satisfies
U2 > U > Ulo then the disturbances originating on the initial manifold concentrate on the
leeward side, ad, of the parallelogram. This concentration occurs due to the fact that the
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Fig.!. The screening effect for the Ist order evolution equation.

disturbances initiated to the left of the segment ad overtake this segment in their subsequent
traveL At the same time, the disturbances within the segment lag behind since the segment
moves faster. Mathematically, this is expressed as the collision of characteristics arriving at
ad from both sides. Because the array (xo, Xo +h) of oncoming disturbances has been
redirected, no disturbances will enter the quiescent region ("shadow zone") d'dfbb' shown
on the figure. This region is thus completely screened from the encroachment of a
disturbance z(x, t) which is identically zero within it.

4. CONTROL OF THE SECOND ORDER HYPERBOLIC EQUATION

The longitudinal wave propagation along elastic bars is governed by the second order
hyperbolic equation of the type

(4)

this equation provides complexities compared with its Ist order counterpart (I). The main
reason is because eqn (4) introduces two phase velocities: a = Jk/p and -a = -Jk/p,
i.e" the waves traveling in opposite directions. Desiring to suppress both waves in a sense
indicated above we should take actions aimed to create waves travelling both in the same
direction.

Such waves may be arranged through the formation of composites with parameters
that are variable both in space and time.

More specifically, we will assume that the material parameters p. k address the fol­
lowing properties:

(i) they are both space and time dependent:
(ii) at each point (x, t) the pair (p, k) may take either the values (PI. k \) or the values

(P2' k 2) :

(iii) these admissible values are taken within alternating layers having the slope
dx/ dt = V so chosen as to ensure regular transition of continuous disturbance z(x, t) across
the interface from one layer to another. In other words. both kinematic and dynamic
compatibility conditions will be observed across the interface.

Condition (iii) will be satisfied if we postulate the following relationship between the
characteristic slopes ai = Jk i / Pi' i = 1.2, and V (we assume that a2 ~ a\)

V 2
-a~

-,--~' ~ o.
V- -a~

(5)

The procedure that will eventually produce the screening effect applied to eqn (4) will
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x x
Fig. 2. (a) Composites of r-typc. (bl Composites of I-type.

include two steps. First, we use the properties (i)-(iii) and choose the value of V and the
volume fraction m l of material (Ph kd in a composite to construct a rank 1 laminate with
effective phase velocities a'l, a; (a; ~ a'l) possessing the same sign, say positive, i.e., having
disturbances traveling both to the right. We will call such a composite r-composite (Fig.
2a). Applying - V instead of V in the above construction, we create the I-composite, with
effective phase velocities - a'I' - a; being both negative and related to waves traveling to
the left (Fig. 2b).

At the second step we apply r- and I-composites to construct the material that
implements the screening property. To this end assume that the (x, t)-plane is occupied by
the r-composite everywhere but within the rectangle mnpq where the I-composite is applied
(Fig. 3). The characteristics of both families will then collide at the leeward face mn of the
rectangle, and the discontinuity will develop along it. At the same time, within the domain
rqr5nu the value of:;: will be identically zero because the initial disturbance :;:(0, x) will never
reach it since it will be averted from it on a halfway due to the appropriate turning of
characteristic directions.

This screening effect will remain in place if we allow for the domain mnpq to be a
parallelogram with the slope U of faces mn and pq satisfying the condition

As before. the screening effect has become possible due to the smartness of participating
materials, specifically because of the time dependence of their stiffness and density. Both

u

n
p

Fig. 3 The screening effect for the 2nd order hyperbolic equation.
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characteristics may be made space and time dependent in a variety of ways, e.g., through
the electrorheological fluid pumped in and sucked out along the bar at appropriate locations
at appropriate time. The time dependence of density p is intrinsic in the construction
specified above: in the absence of such dependence this construction fails to work because
the rank I composites mentioned above will then possess effective phase velocities of
opposite signs. It is still unknown whether the screening effect will ever be possible lest the
density be time dependent.

5. CONSTRUCTING THE r- AND I-COMPOSITES

We make use of conditions (i)-(iii) and inequality (5) to apply a standard procedure
(Bakhvalov and Panasenko (1984), Lurie (1993)) ofcalculating the effective phase velocities
of a composite assembled from the above mentioned layers distributed in ~pace-time, i.e.,
on the (x, t)-plane.

Equation (4) is replaced by the system

p::,1 =::~, (6)

with ::\ = ;:, and ::2 denoting an auxiliary dependent variable. We will require that both ::1
and ;:2 be continuous, thus ensuring the conditions of kinematic and dynamic compatibility,
respectively, to hold. Formally, this means particularly that inequality (5) should be satis­
fied.

Let us introduce coordinates T, n, measured, respectively, as distances along and across
the layers on the (x, t)-plane: the derivatives ::,' , ... ,::~ may be expressed through ::;, ... ,
;:~ by the formulae

(7)

etc. The system (6) then takes on the form

or, equivalently.

p+k
----,--, ::;:Lt,
px; - kt:

, pk 1 p+k ,
.?~ == - -----'1--,2-;: + --,----__=;_:; Xr!r"

px;-kt; px;-kt;
(8)

Bearing in mind the continuity of ::1, ::2, i.e., that of ::;, ::; across the layers' interface, we
average both equations (8) over the layers. The quantities ::;, ... ,;:~ will then be replaced
by (::1 )r' ... , (;/)" where the operation <-) = ml(-)I +m2(')2 is expressed through the volume
fractions m I' m2 ~ 0 (m 1+m2 = I) of materials I and 2 in the composite, and (-) I' (-h denote
the values of (-) in these materials.

Preserving the notation::;, .... ::,~ for (;:1 \' .... (::)". we arrive at the following system:

;:,~ = (A +B)::;'u, - C::;.

::,~ = -D::; +(A+B)::;x,t,.

with parameters A, ... ,D defined as

(9)



1638 K. A. Lurie

, k \
A = I~,~-, '

\px; -kt; I
B = / P )

, "\px; -kt;

/ pk \
D=\--/.,px; -kt;

(10)

with

By virtue of eqns (7), (10), the system (9) may be reduced to

!Y.z~ t, + {3z; x, = z~xr + z? t"

'Y. = Alc' {3 = BIC,j = AID. If = BjD.

(11 )

Evidently.

j If C
~=-=e=-
'Y. {3 D'

and eqns (11) thus depend on three parameters: 'Y., {3, e. These parameters will be con­
veniently expressed through Ph k, (i = 1,2). m l , m2' and V = dxj dt. To this end, we first
notice that

( T,)V 2 _1
A a-

rt. = -c = k,k, - .
- pV 2 -k

B V 2 -if/3 = - = PiP2 ~_._---::..,

C pV 2 -k

C pV2 -f
e=-=

D PIP2<k) V2-k i k 2<p)

Consider the characteristic form

(12)
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associated with eqns (II). The characteristics of (II) have the slopes on the (x, f)-plane
computed as the roots 1'1' 1'2 of

or, with the notation

dx
V=­d[ .

This equation has the roots

(13)

V+:xJ0
1'2 =

VfJJ0+ I

with the product

The roots 1. 1, 1'2 will be real if 0 > O. The latter condition will be satisfied as long as
inequality (5) holds. If V = 0, then C1. = k l k 2j( fJ = PIPiij( 0 = k;k lk 2<p), and
)'1/'2 = -0iY.2 = - <p) -I<l!k) -I < O. If V = XJ, then 1'1/'2 = -lj0fJ2 = - <k)(l/p>< O.
We will investigate 1'1..12 as the function of V2.

Referring to (12) we show that the following formulae hold:

with

, ,I
V--0:x- =-p

Ll '
, , I

1- V-0fJ- = ~Q.
1

1-0:xfJ =-5
Ll

, -[(1) , (I)J' ,,[(1), J2P= P(V) =(pV--k) k v-- p V--aia:i a
2
V~-I ,

For P, Q, 5 we have alternative expressions
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Equation (13) now obtains the form

Qi.c -2V5i.+P = O.

or. equivalently.

The product i.li.c of its roots equals to

By direct inspection we show that (tlp = Pc-Pl' etc.)

and. consequently.

_(I) I

k p > ,,(t)

If VC is so chosen that

( 14)

(15)

then i.l/.c > O. The right inequality (15) will become consistent with (5) if we show that the
inequality
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is possible, and then choose V 2 satisfying
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(16)

I

p(I) <

Inequality (16) is confirmed by direct calculation:

This expression can be made negative even though we assume that u~ > aT, i.e.,

To make L negative. it is necessary that f!kf!p > Plf!k~klf!p > O. For example, if k2= 10,
P2 = 9. k 1 = PI = L then Plf!k -klf!p - m2f!kf!p = 9 - 8 - 72m2• and this expression will be
:s;0 if m2 ~ 1/72. At the same time, the difference k2!P2-kl!Pl should be positive, i.e., the
ratio k!P should increase. Combined with f!kf!p > 0 this means that the increase may be
due to that in k and less intensive increase (not decrease) in P. or due to the decrease in P
and less intensive decrease (not increase) in k.

In observance of L :s; 0 and inequality (15). the product ;'lic2~ O. We thus obtain
laminates for which both effective phase velocities show the same sign. This sign can be
changed to opposite if we switch from V to ~ V. Both velocities will be positive for r­

laminates and negative for I-laminates (Figs 2a, 2b).

Remark 1. Inequality (16) will become impossible if we assume that PI = P2' Then

since k 2 > k l . In this case. the product ;.1)'2 cannot be made positive. A similar result holds
true when k I = k 2 • We conclude that the roots of the same sign can be produced through a
simultaneous variation of both density and stiffness.

Remark 2. Inequality (16) cannot be replaced by a stronger inequality
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_(1) ,k p < aj.

This is impossible since (recall that !.ia2 = a~ - aT > 0)

Remark 3. The screening effect will be preserved if P2 = k2 and PI = k l but PI #- P2'
Inequality (5) will then be trivially satisfied by any value of V2 since aT = a~ = I. By
inequality (14),

and inequality (15) specifies the interval of V 2 making the product 1'1/'2 positive. This case
is special because it eliminates limitations on the admissible choice of V 2

.

6. THE ANALOGY WITH GAS DYNAMICS

The effect observed here presents a close analogy with supersonic gas dynamics where
disturbances travel with the speed a of sound relative to the particles and are at the same
time transferred by the particles moving with their own material velocity v. Should lvl be
greater than a, then the resulting speeds v±a of disturbances relative to the laboratory
system will be both of the same sign. In our case, a similar phenomenon emerges due to a
local redistribution of mass density P as well as to the oscillations of the local stiffness k.
These oscillations result in the effective decrease of phase velocity due to the successive
reflections of waves from the layers' interfaces and the subsequent attenuation of the
transient wave (Bakhvalov and Panasenko (1984». Both effects work together toward the
desired overall result allowing the disturbances to propagate in the same direction relative
to the laboratory frame.

The collision of characteristics occurs both in gas dynamics and in a control problem.
In gas dynamics, it creates the shock waves emerging in the flow in accordance with the
non-linear equations of motion. Particularly, the relevant set of conservation laws (mass,
momentum, energy) is observed across the shock waves.
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In a control problem, the appearance of a strong discontinuity along the side mn of
the rectangle mnpq on Fig. 3 cannot, however. be allowed from the viewpoint of the integrity
of the construction. The damaging influence of this discontinuity can be avoided once the
bar is originally cut at the location of this discontinuity. Both sides of the cut will then be
exposed to their own independent displacements; the left half of the bar may be disregarded
and taken away. There will be no reflected wave traveling back to the right from the cut:
the energy of the initial state confined to the segment mq on Fig. 3 will be transformed into
the work required to produce the relevant displacement of the left end of the bar over the
time period m6.
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